UP | HOME

Quadrature Amplitude Modulation
A method for digital modulation widely used in modern telecommunication.

Table of Contents

Quadrature Amplitude Modulation is widely used.

1. Complex numbers

Euler equation forming the basis of quadrature amplitude modulation.

\begin{equation} \label{org46065ff} e^{j\theta} = \cos(\theta) + j\sin(\theta) \end{equation}

Equation \eqref{org46065ff} tells us that any complex phasor can be decomposed into the sum of a cosine and sine component.

1.1. Cosine—the in-phase component

\begin{equation} \label{org999f886} \cos(2\pi f_0 t) = \frac{e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}}{2} = \frac{e^{j2\pi f_0 t}}{2} + \frac{e^{-j2\pi f_0 t}}{2} \end{equation}

We see that this equation features the following elements:

\( -j2\pi f_0 t \) Negative frequency
\( j2\pi f_0 t \) Positive frequency
\( \frac{1}{2} \) Component magnitude

1.2. Sine—the quadrature component

\begin{equation} \label{orgbb2ed96} \sin(2\pi f_0 t) = \frac{e^{j2\pi f_0 t} - e^{-j2\pi f_0 t}}{2} = \frac{e^{j2\pi f_0 t}}{2} - \frac{e^{-j2\pi f_0 t}}{2} \end{equation}

2. The constellation

QAM is based on imaginary numbers.

Real Imaginary
1 i
2 -i
   

Date: 2022-03-31 Thu 00:00

Author: Marius Peter

Created: 2024-01-02 Tue 19:22

Validate